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ABSTRACT

This paper is a study of the rheology of 
shearing grain flow and debris-flow 
materials. A general rheological model is 

developed that incorporates, simultaneously, the 
macro-viscous rheology we have developed for 
simple debris flows and the inertial rheology 
developed by Bagnold for grain flows. The 
combined model largely accounts for the dynamic 
behavior of spherical grains and water as measured 
by Bagnold (1954) and of mixtures of sand, water 
and clay, as measured under undrained conditions 
with a new apparatus, the rolling-sleeve viscometer. 
The model predicts the flow curves for sand-fluid 
mixtures and simple debris with interstitial slurries 
with various viscosities. It predicts the effects of 
wide ranges of concentrations of sand on the 
viscosities of sand-fluid mixtures and simple- 
debris.

The research reported here is a foundation for 
further research. The rheological model provides a 
basis for analyzing flows in which concentration of 
the granular phase changes from place to place, such 
as subaerial or subaqueous channel flow and for 
subaqueous turbidity flow. Some of these 
complexities are illustrated via numerical solutions 
of the equations governing the flow of the idealized 
material down a wide channel. We study solutions 
for end members of undrained flow and completely 
drained flow in order to bracket the range of 
possible behaviors of such mixtures.

INTRODUCTION

I n a series of papers that have become classics in 
geological literature, Bagnold (1936, 1941, 
1954, 1956, 1966, 1980) provided a sound 

foundation for investigations of the flow of granular 
materials, especially grain flows, in which the 
impact of interstitial grains is a major source of 
resistance to flow. Starting somewhat later, I (1965, 
1970, 1984) developed macro-viscous rheological 
models (Terzaghi-Coulomb-viscous flow) for a 
special kind of flow of granular materials, debris 
flow (Figure land Figure 2), involving granular 
materials and clay-water slurries, in order to 
understand various field and experimental 
observations of debris flows. In macro-viscous 
flow, the resistance is a combination of the strength

and viscosity of the slurry in the interstices of the 
coarser, granular phase and the interaction of the 
particles of the granular phase. A familiar material 
that moves by macro-viscous flow is wet concrete. 
If one wants to correctly think about how mobile 
debris would appear, one thinks about wet concrete, 
except it is a peculiar wet concrete in which the rock 
aggregate docs not necessarily consist of granules 
and pebbles, but may include cobbles and even 
boulders. In contrast, in inertial flow analyzed by 
Bagnold, the material flows much like dry sand on a 
steep slope. The particles bang together, saltate and 
generally disperse as they move en-masse, down 
slope. A natural example that must have flowed by 
this mechanism, except there certainly was 
interstitial water produced the slugs of debris in 
deposits at Klare Springs in Death Valley (Figure 3).

I made no attempt to reconcile the two 
approaches until the 1970's, when Rodine and 
Johnson (1976) investigated the mechanism of 
strength of debris and McTigue (1979) re- 
investigated Bagnold's grain-inertia model for dry 
granular solids. On the basis of those studies, I 
suggested a general form for a rheological model for 
debris flow (Johnson, 1984), but did not pursue the 
matter.

These different investigations led, of course, to 
divergent conclusions about how debris moves and 
these have been the subject of some controversy. 
Several investigators have claimed that debris flows 
are identical to grain flows (e.g., Takahashi, 1991) 
or have mechanically analyzed debris flows by 
assuming that the inertial mechanisms of grain flow 
are the only relevant mechanisms of debris flow 
(Bagnold, 1956; Takahashi, 1977, 1980, 1991; 
Chen, 1985). My concurrent research had assumed 
that debris flow would be dominated by macro- 
viscous rheological properties (Johnson, 1965, 1970; 
Johnson and Hampton, 1968, 1969; Johnson and 
Rahn, 1970; Hampton, 1972), but it had migrated 
toward the Bagnoldian approach (McTigue, 1982; 
Rodine and Johnson, 1976; Johnson, 1984; 
Martosudarmo, 1994).



A. B.

Figure I. Experimental debris flows moving down channel, about ten cm wide, and of decreasing depth 
distally. Debris is pebbly silt unit of 1917 Surprise Canyon debris flow deposit in Panamint Valley, 
California (Johnson, 1965). Debris contains water plus grains ranging from granules to clay sizes. A. 
Oblique view of debris chute source in distance, rectangular channel and planar "fan" in foreground, 
showing levee (or lateral deposit), medial deposit and lobe of a typical experiment. Slope angle of planar 
surface is 7°. B. Vertical view of moving flow at exposure time of about 1/30 sec. Traces are paths of 
reflective flakes of "glitter. " Black, double-headed arrows show sides of channel, below mud surface. Mud 
outside these limits is in overbank, levee flow or deposit. Black single-headed arrows show, approximately, 
direction of horizontal component of velocity vectors at various places. The pattern shows how particles 
originally in center of channel end up in levees and in outer edge of snout of flow.



A.

B.

Figure 2. Two parts of a debris flow during 1969, Wrightwood, California debris-flow episode. A. Oblique 
view over top of front of debris flow, showing abundant large clasts protruding from the front, essentially 
forming a dam of interlocked blocks and boulders. Largest boulder about 50 cm in maximum dimension. B. 
High, oblique view of debris flow a few meters behind bouldery front, exposing more of the interstitial mud. 
The boulders appear to be more widely separated and to be smaller. Channel two to two and a halfm wide. 
In later parts of this flow, the largest particles become smaller, and the flow becomes thinner. Eventually, 
the channel returns to a small stream of muddy water, until another debris flow appears (Johnson, 1970).



Figure 3. Avalanche or debris flow deposits on a steep talus cone near Klare Springs, on south wall of 
Titus Canyon, Death Valley, California. A. Complex of deposits of many avalanche waves. Slope in 
foreground about 35°. In the vicinity of the arrested wave, the slope angle is about 25°. B. Detail of 
arrested wave, showing open, clean channel upstream and downstream from wave. Maximum width of 
arrested wave about 5 m. Channel roughly U shaped and on sides are at least four pairs of levees, 
reflecting four waves that passed through channel. Each wave produced paired levees. C. Channel down 
which two waves moved. The levees are distinct, but the medial deposits are nil. The two arrested waves at 
the distal end can be distinguished only with difficulty. They are small because they have been largely 
depleted by materials left behind in levees, as described in pyroclastic flow deposits at Mt. St. Helens by 
Schulz (1996).
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The Bagnoldian approach of investigating 
fundamental mechanisms of flowing granular solids 
is valuable for many reasons. It describes 
rheological properties of debris in terms of 
fundamental variables related to its constituents, 
such as fluid viscosity and grain size, density and 
concentration, as has been advocated by Iverson and 
Denlinger (1987). Also, it is valuable because it 
predicts correctly the large contribution of the grains 
being transported to the gross viscosity of the 
mixture of transporting fluid and grains. Finally, it 
correctly predicts the variability of rheological 
properties of debris from place to place within a 
flow. Ironically, this latter prediction largely 
discredits the measurements that Bagnold and others 
have performed to study the dispersive-pressure 
phenomenon because rheology generally must be 
studied under constant-state conditions if one's 
conclusions are to be valid (Rivlin, 1947, 1948, 
1951;TruesdellandNoll, 1965).

This paper attempts to unify the rheological 
research on grain flow, debris avalanche and debris 
flow by proposing a combined macro-viscous and 
inertial model and using experimental measurements 
that we have recently made in order to explore the 
rheology of simple mixtures of granular solids and 
water (Martosudarmo, 1994; Martosudarmo and 
Johnson, 1997). The unification has been made 
possible largely by introduction of a new 
experimental apparatus, a rolling-sleeve viscometer 
(Johnson and Martosudarmo, 1997), for measuring 
some of the rheological properties of clay, water and 
medium-grained sand. On the basis of the 
theoretical model we can use the experimental 
measurements to determine some of the rheological 
properties of simple grain-flow materials mixtures 
of sand and air or sand and water and the 
rheological properties of simple debris sand, water 
and clay. With the experimental measurements, the 
rheological model and appropriate equations of 
motion we can derive velocity distributions of grain 
flows and muddy debris flows in channels.

RHEOLOGICAL MODELS

We begin by reviewing the rheological models 
proposed by several investigators to describe grain 
flow, debris avalanche, and debris flow.

Bagnold's Original Models for 
Grain Flows

B agnold (1954) experimented with neutrally 
buoyant spherical particles in a coaxial 
rotating cylinder device, and distinguished 

between two limiting cases theoretically, a macro- 
viscous behavior and a grain-inertia behavior2 . For 
the grain-inertia behavior, Bagnold presented a 
simple theoretical/empirical analysis to explain a 
normal stress effect, which he termed dispersive 
pressure, and a nonlinear relation between shear 
stress, axz, and velocity gradient, Dxz; he ignored 
the interstitial fluid in deriving an equation for the 
shear stress. In my terminology, Bagnold's 
expression for the shear stress is

axz = Aps sin(Q) (cf/s) F(d/s) Dxz2 (1)

in which Q is an angle that depends on the angle of 
collisions, and d is the diameter, ps is density and s 
is the spacing between spheres (assumed to be 
single-sized). Here A and Q are arbitrary 
(dimensionless) constants and F(d/s) is a function", 
all to be determined experimentally.

Bagnold determined empirically, by curve- 
fitting, that F(d/s~) is roughly equal to (d/s~) for 
spheres spaced so widely that (d/s) is less than 14, 
but that F(d/s) increases rapidly as (d/s) becomes 
greater than 14. At a sufficiently large value of (d/s), 
the spheres lock together. He found that 9 varies 
only slightly with (d/s) and that, for his experiments, 
tan(0) = 0.32 and a sin(0) - 3.9 x 10~3 (Bagnold, 
1954, p. 58). Thus, based on experimental results 
with neutrally-buoyant mixtures of spheres and 
fluid, Bagnold proposed that, for the shear stress,

2 Please note that the purpose of the following discussion 
is to provide the background, using some new terminology, of a 
formulation that is somewhat different from Bagnold's, not to 
show how Bagnold developed his model. I refer to his excellent 
papers for a proper explanation of his theory.

3 The quantity d/s is a fundamental quantity in Bagnold's 
analyses. It is ar inverse measure of the spacing of particles: d\s 
grain diameter, and 5 is spacing of particles. Bagnold used the 
symbol X for this ratio. Thus, as the spacing becomes large, X 
becomes small: as the spacing becomes small, X can approach 
infinity. 1 do not use the linear parameter X because I want to 
introduce a volumetric parameter, 0, that seems to be useful for 
a wider variety of problems related to debris flow.



Apssin(Q)d~
iPxz (W

and, for the "dispersive pressure,"

=vJ  ? ?

Apscos(Q)d~
(2b)

rounded, uniform sand grains (Terzaghi and Peck, 
1948; Bagnold, 1954). Some values of volume 
concentrations of various granular particles are 
given in Table 1 .

Takahashi and Chen Models for 
Debris Flow and Debris Avalanche

in which the ratio of the grain diameter and the 
spacing of grains is expressed in terms of 
concentration, c, that is, so that

(2c)

T akahashi (1978, 1991) and Chen (1987, 
1988) have largely adopted the equations 
derived by Bagnold to describe the flow of 

debris. Takahashi (1991, p. 27), however, 
differentiates between stresses due to interaction of 
the granular solids, which he assumes are given by 
eqs. (2), and stresses due to turbulence in the 
interstitial fluid (ibid. p. 36-38), which he models as 
a correction factor to eq. (1),

axz = dl[Aps sin(a)(d/s) 2

in which cmax or f+s0max is the maximum possible 
concentration. The concentration of grains, c,

fr. (2d)

is expressed in terms of ratios of volumes , 0, such 
that the volumetric ratio of fluids to solids is

s& = volume fluid/volume solid = Vi/Vs

The maximum concentration cmax = f+s0max = 
0.74 for uniform spheres, and about 0.65 for well-

4 The widely divergent terminology and notations for 
volume concentrations of various components that we study for 
insights into physical properties of debris are hopelessly 
confused and ambiguous in the literature of soil science, 
chemistry, pharmacology, geology, ceramics, and geotechnical 
engineering. Thus, we introduce the universal notation, for 
example s|+s©- Here 0 always means volume ratio, a 
dimensionless quantity. The leading superscript indicates the 
quantity in the numerator of the ratio and the leading subscript 
indicates the quantities in the denominator. In this case, s 
denotes sand and si denotes slurry, so the example indicates the 
volume ratio of sand to sand plus slurry. Often we use/for fluid 
even if it is a slurry. Furthermore, the notation facilitates the 
transformation from one system of notation to another. For 
example, one can express the sand concentration s]+s© in terms 
of the slurry-to-sand ratio just by inspection of the superscripts 
and subscripts of the former, dividing each term by the sand 
volume: s ] +s© = 1 /(I + s © ). Thus, the notation is both 
unambiguous and powerful.

(3a)

in which pf is density of the interstitial fluid, 
d2(£,s/d)2 is a mixing length, and £, is a constant, for 
which Takahashi suggests a value of 2. Finally, 
Takahashi (1991) suggests that, for a turbulent 
debris flow, one adds a third term to eq. (3a),

oxz = d2[A ps sin(CL) (d/sf

(l/d) 2pJDxz2 (3b)

in which pd is the density of the debris and l t is the 
mixing length, which is much greater than the 
mixing length for the interstitial fluid.
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McTigue, Savage, Goodman and 
Cowin Models for Dry Grain 
Flows

In their research into the flow of dry granular 
materials, Goodman and Cowin (1971), Cowin 
(1974, 1978), Savage (1979) and McTigue

(1979, 1982) have thoroughly rederived equations 
for the flow of such materials, starting with the 
insights provided by Bagnold's analysis of the same 
problem. Campbell and Brennen (1985) and 
Campbell (1989) have solved for the flow of dry 
granular solids in chutes and have performed 
experiments in order to test the relevance of 
theoretical models to such flows. Here we will 
largely follow McTigue (1979, 1982).

Table 1 Volumetric Concentrations

Angular beach 
sand*

Spherical lead 
shot*

Ottawa sand

Densest Packing
(Cmax)

0.64

0.74

0.66

Critical State 
(cj

0.56

0.63

NA

Densest Packing
(S ®min)

0.55

0.35

0.52

Critical State (*0CS)

0.79

0.59

NA

Rafter Bagnold, 1966) Value for densest packing of lead shot is theoretical. Other values measured.

The theoretical ^0min value for cubic packing is 
0.91, whereas it is 0.35 for tetrahedral packing of 
perfect spheres. According to the data from Harr 
(1962), the values of §0 are 0.85 for loose packing 
and 0.52 for dense packing of uniform sand. For the 
Ottawa sand we used in the study, the value of §0 
for loosest packing is 0.7, achieved by pouring the 
sand into a column. The value of £0 for densest 
packing is 0.52, achieved by tapping a sand column.

McTigue (1979, 1982) has re-solved the 
Bagnold grain-inertia problem, eliminated many of 
the special assumptions, and generalized his analysis 
by considering dry granular solids to be similar to a 
Reiner-Rivlin fluid (Rivlin, 1948; Truesdell and 
Noll, 1965). According to McTigue and Rivlin, the 
normal and shear stresses, averaged over an 
ensemble of grains, are given by, for example,

[(DXX2 +D 2+DX:J (4a)

-4K- 1
* ja_ * ja / [(DxyDyz +(Dxx +Dzz)DxJ 

(4b)

(4c)

Dr
Dxx

in which the pressure is (Passman and others, 1978)

(4d)
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Here a is t\\Q pressure coefficient and 0CS is the 
volumetric ratio at the so-called "critical state" of 
deforming granular materials (McTigue, 1982), 
some values of which are given in Table 1. In eq. 
(4c), C is cohesion and <)) is angle of internal friction 
of the granular phase. A, is the coefficient ofinertial 
viscosity and A2 is the dispersion coefficient. The 
invariant is

-4^ [(DxyDv:

K'

The quantity

Dti = Dlf-Dk (4e)

clearly plays an

important role in these equations. The volumetric 
concentration, s+f© is necessarily less than or equal 
to the critical concentration. At the critical 
concentration, the material locks-up and cannot 
flow; the deformation rate D, goes to zero. Further, 
for the stress to be finite, the deformation rate must 
decrease as the volumetric concentration increases 
and approaches the critical value.

(DXX+D,JDXJ (5b)

(5c)

in which pf is pressure in the fluid phase (generally a 
mixture of uater and clay minerals) and r| deb is the 
viscosity of the debris. The viscosity of the debris 
seems to be predictable by a remarkably simple 
expression, derived from mixing theory 
(Martosudarmo, 1994),

A Model for Macro-viscous and 
Inertial Flow

(5d)

Macro-Viscous Flow

I n Martosudarmo (1994) and Martosudarmo and 
Johnson, 1997) we have re-investigated the 
application of the Coulomb-viscous rheological 

model to simple debris, consisting of mixtures of 
water, clay and sand, that was suggested in my early 
field, experimental and theoretical study of debris 
flow (Johnson, 1965, 1970). The model is 
generalized by the simple fluid model developed by 
Rivlin (1948) and applied by McTigue (1979) in the 
form of eqs. (4),

Coupling to Migration of Interstitial Fluid
The rheological equations are coupled to the 

migration of pore fluids for flows with water or 
slurry in the interstices of the granular phase, as we 
have shown elsewhere (Martosudarmo and Johnson, 
1997). Therefore, we need to couple any solution of 
a flow problem with a solution to a set of equations 
for movement of fluids relative the grains. For 
example, if \\i is the potential of the fluid phase 
(Bear, 1972),

S fo_ S
 +P s+f

[Dxx2 +Dxy2 +Dxz2] (5a)

\\i = z p/jf (6a)

in which x and z are arbitrary Cartesian coordinates, 
with z tilted at angle |3 from the direction of 
gravitational acceleration. If gravity were small 
compared to other accelerations, eq. (6a) would 
indicate that the potential is given largely by the 
fluid pressure. In general, one of the components of 
flow rate of the fluid phase through the debris is 
(Bear, 1972)

12



(6b) (6e)

in which *Kdeb is the hydraulic conductivity of the 
debris with respect to the fluid phase. Further, the 
volumetric change in content of the fluid phase with 
time is given by the continuity equation familiar in 
groundwater theory (Bear, 1972),

= dffKc/uh (d\v/dx)j/dx

+d(Kdeh(dy/dz)]/dz (6c)

For simple debris, containing a single size of coarse 
grains, the permeability is

/K - (yd)
Kjeh 180 (6d)

These equations indicate that a change in the 
volumetric concentration of interstitial fluid, S0, 
requires a gradient in head, \\j, which generally 
implies a gradient in pressure, pj.

We have experimentally determined relations 
between hydraulic conductivity and volumetric 
ratios of water to grains, S 0, for the fine-grained 
Ottawa sand, kaolinite clay and a silt. The values for 
sand and silt were determined with a fluidizing 
column, in order to develop the large void ratios 
(Martosudarmo, 1994). The data are shown as points 
in Figure 4. The hydraulic conductivity was also 
calculated using the theory presented by Bear 
(1972), expressed in eqs. (6d) and (6f), using the 
average grain size for the sand and silt. The 
correlation between measurements and theory is

w
excellent except for the low end of the s @ data for 
silt. The effective grain size for the clay was simply 
estimated.

in which cp is a shape factor of about 0.61 for well- 
rounded sand grains (e.g., Bear, 1972). The 
hydraulic conductivity is

c

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Volumetric ratio of water to grains (

Figure 4. Relations between hydraulic conductivity and volumetric ratio of water to grains. Points are experimental 
measurements for fine-grained Ottawa sand, silt, and the kaolinite clay used for the rheological experiments described herein. 
Solid lines are theoretical, according to eqs. (6d) and (6e). Approximate grain sizes indicated in parentheses.

13



Combined Macro-Viscous and Inertial 
Flow

To extend the theoretical model from strictly a 
macro-viscous behavior considered for debris or 
strictly an inertial behavior considered for dry 
granular solids, we tentatively propose a more 
nearly general model, that should closely describe 
both the macro-viscous and inertial flow of debris. 
We combine our model for macro-viscous flow, 
eqs. (5), with McTigue's model for inertial flow, 
eqs. (4), such that

]DX

-4 A, [(DXX2 +DXV2 +DX!] (7a)

-4 A, [(DxyDyz+(Dxx+D,JDxJ (7b)

in which

imix =

, s 2 s 2A = a(s+J® -S+J®CS)

(7c)

(Id)

Here r| deb is the viscosity of the mixture, expressed 
in terms of the viscosity of the fluid phase in eq. 
(5c). According to Bagnold, for single grain sizes,

A, = A p.d2

where A = 0.013 for the spheres and fluids he tested, 
but Bagnold considered only the inertial behavior in 
that case. We will leave A or A, as an empirical 
constant.

NMK is the McTigue Bagnold dimensionless 
number

which compares the nonlinear, inertial viscosity, due 
to grain impact, to the linear, macro viscosity of the 
mixture. The inertial viscosity is,

(7g)

in which A,, the inertial coefficient (with units of Pa
2 ^

s ), and s+f )max are constants to be determined.
The McTigue-Bagnold number is greater than 

one if the inertial viscosity is stronger and less than 
one if it is weaker than the macro viscous resistance 
to flow.

The McTigue-Bagnold number derived here is 
different from the Bagnold number discussed by 
Takahashi (1991), which was introduced by 
Bagnold (1954, p. 58) as a number that should allow 
one to differentiate between flows in which macro- 
viscous behavior dominates and grain inertia 
behavior dominates. Bagnold introduced the 
dimensionless number,

(7e)

as proportional to the ratio of the shear stress 
according to the grain-inertia theory and the shear 
stress according to the macro-viscous theory. 
According to Bagnold (1954), a flow is within the 
macro-viscous range if yV < 40 and it is in the grain- 
inertia range if N > 450.

Our McTigue-Bagnold number, eq. (If), 
preserves the spirit of Bagnold's dimensionless 
number, but has the advantage that it is updated 
based on more recent work and it is greater than one 
if the nonlinear inertial viscosity is stronger and less 
than one if the inertial viscosity is weaker than the 
linear macro-viscosity.



Rubber Sleeve

Figure 5. Schematic diagram of rolling sleeve viscometer. The rubber tube is about 2.5 cm in diameter and 20 cm long; it is 
closed at each end after the sample is loaded. Its cross section is an oval as it moves down the slope provided by a tilted 
board, two to three m long. The velocity of the rolling sleeve is measured by determining the time (average of 4 or 5 runs) it 
takes for the sleeve to move 30 to 40 cm, after terminal velocity is reached.
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EXPERIMENTS WITH GRAIN- 
FLOW AND DEBRIS-FLOW 
MATERIALS

We have used the rolling sleeve viscometer 
(Johnson and Martosudarmo, 1997) 
(Figure 5) to study the undrained 

deformation of classic grain-flow materials, 
consisting of mixtures of distilled/deionized water 
and medium-grained sand, and the deformation of 
simple debris, consisting of mixtures of water, 
kaolinite clay, and the same medium-grained sand. 
We have used the same materials so that differences 
we detect are results of differences we can measure.

Experimental Materials

The medium-grained sand is Ottawa quartz 
sand . The sand has an average grain size of 
about 0.6 mm. The grains are well-rounded, 

nearly spherical. The hydraulic conductivity, K, of 
the consolidated sand with respect to water ranges 
from WKS = 6 x 1(T4 m/s at a volumetric ratio of 
water to sand of VSV0 = 0.52 to VV KS = 14 x 10~4 m/s at 
s 0 = 0.7. The loosest packing of static Ottawa sand
is C anH© = 0-7. The volumetric ratios of water to

sana w w 
dispersed sand ranged from s 0   0.8 to s 0 = 1.5 in
the experiments.

The slurries used in experiments with simple 
debris consisted of distilled/deionized water and 
Georgia kaolinite type SC-25 produced by 
Akrochem . About 99.7% passes through a 325 
mesh and 80% is smaller than 5 microns. The clay 
has a plastic limit (PL) of 33%, or  \® = 0.85, and a

\V
liquid limit (LL) of 63 % or c j@ = 1.63 (Lambe and 
Whitman, 1969). The flow limit (FL) is about 270 % 
or ^|0 = 7. The flow limit is defined as the water 
content at which the slurry can flow freely and the 
slurry has the ability to erase a streak or a groove 
formed on its surface, so the surface is always 
smooth (Tadros, 1987).

5 U.S. Silica Corporation, Ottawa, Illinois 61350 [800- 
635-7263].

6 Akrochem Corporation, 255 Fountain Street, Akron, 
Ohio 44304 [800-321-2260].

Properties of Sand-Water (Grain- 
Flow) Mixtures

Behavior of Deforming Mixtures

When using the rolling-sleeve apparatus, 
sand and water are sealed in a rubber 
sleeve, and the sleeve is placed on an 

inclined ramp (Figure 5; Johnson and 
Martosudarmo, 1997). If the slope angle of the 
inclined ramp is low, the sleeve either rolls down the 
ramp or remains stationary. In general, if the slope is 
low, and if the rolling sleeve is held onto the surface 
of the ramp for a few seconds so that the sand can 
sediment, the sleeve remains stationary when it is 
released. But if the rolling sleeve is agitated and 
then quickly released on the ramp, before the sand 
can sediment, the tube rolls down the slope. If the 
slope is high enough, the tube rolls down the ramp, 
picking up speed as the sand dispersed in the fluid, 
and then maintains constant speed at the terminal 
velocity. All measurements reported here were made 
after the rolling-sleeve had achieved terminal 
velocity. For most mixtures of sand, a few tenths of 
a meter sufficed for terminal velocity.

We calculate shear stress and deformation rate 
using the size and shape of the cross section of the 
rolling sleeve, the mass of the mixture, and the 
velocity of the rolling sleeve (Johnson and 
Martosudarmo, 1997):

Dxz = (V/2c)[l-(c/af]

in which a is the major and c is the minor axis of the 
ellipse, and Kis the down-slope velocity of the 
center of the ellipse. The shear stress is,

axz = [ft c y sin cc]/I

where y is unit weight of debris, a is the slope angle 
and / is a function of (c/a) in the form of

/ « 4.75 (1 - c/a), for (c/a) < 0.5

The relations between deformation rate and 
shear stress for mixtures of sand and water are 
shown in Figure 5. The actual experimental 
measurements were velocity of the rolling rubber 
sleeve, which was used to compute deformation rate, 
and slope angle of the inclined ramp, which was 
used to compute shear stress, so one might consider
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the plots in Figure 6 to be plots of slope angle on the 
vertical axis and velocity on the horizontal axis.

Figure 6 shows strings of data points 
representing the measurements for several different 
slope angles for each mixture.

Sedimentation in Dispersion Gap
For most mixtures, the high end of the 

stress/deformation rate relation was determined by 
convenience but the low end is at minimum 
deformation rate for which the sample remains 
dispersed. The low end corresponds to zero 
deformation rate or else to the minimum 
deformation rate at which the velocity of the rolling 
sleeve could be stabilized. The sleeve would slow 
and might even stop rolling, reflecting 
sedimentation of the sand for conditions below the 
low end.

Thus the lower end of each curve relating stress 
and deformation rate is characterized by a gap, a 
dispersion gap, that is a function of the average 
shear stress to which the mixture is subjected. For 
deformation rates within the dispersion gap the 
mixture will not remain dispersed. For larger 
deformation rates it will.

The dispersion gap is a function of the average 
shear stress and the volumetric ratio of water to sand 
and is defined by the concave-upward, dashed line 
connecting the ends of the thick lines in Figure 6. 
The dispersion gap is very small or missing for the 
mixture with a low volumetric ratio of water to sand, 
S 0 = 0.83 (Figure 6). For this mixture, the sleeve 
does not roll unless the shear stress (slope angle) is 
above a minimum value, corresponding to the static 
strength of the mixture. But if the slope is above the 
minimum value, the sleeve rolls as soon as it is 
placed on the inclined ramp, the sand disperses and 
the rolling sleeve quickly reaches terminal velocity.

Mixtures with higher volumetric ratios of water 
display the dispersion gap, but the gap is visible 
only if the shear stress is sufficiently low. For 
example, consider the mixture with a volumetric 
ratio of S 0 = 0.9. First consider large stresses. If a 
flexible sleeve filled with a mixture of this 
composition is placed carefully on the inclined 
ramp, and held to allow time for the sand to settle, 
different things will happen depending on the shear 
stress (slope angle). If the slope is high, so the shear 
stress is high, say 90 Pa (Figure 6), the sleeve, when 
placed on the inclined ramp, will accelerate and the 
sand will disperse until the deformation rate in the 
mixture is about Dxz = 35/s. The phenomenon is the

same for shear stresses as low as 75 Pa, for which 
the terminal deformation rate was about 23/s. If the 
sleeve is placed on the ramp and agitated slightly, it 
accelerates quickly to its terminal value of 23/s. At a 
shear stress of 67 Pa the dispersion gap is still zero 
but the envelope of the dispersion gap intersects the 
stress axis at this shear stress (Figure 6 ). For a 
smaller average shear stress of about 55 Pa, the 
dispersion gap is Dg = 3/s. Perturbing deformation 
rates smaller than this value will lead to 
sedimentation. The minimum shear stress for this 
mixture to be dispersed is amin = 48 Pa, and the 
maximum dispersion gap for this mixture is (Dg)max 
= 7/s (Figure 6).

The dispersion gap becomes visible only for 
lower slope angles, and corresponding lower shear 
stresses. The flexible sleeve will not move unless we 
strongly agitate and remold the sleeve and its 
contents and then quickly place it on the inclined 
ramp. For example, for a shear stress of about 55 Pa, 
a small perturbation in deformation rate is 
inadequate. Although the flexible sleeve might roll 
at first, the sand sediments and the sleeve soon stops 
rolling. With sufficient agitation, though, the rolling 
of the sleeve becomes unstable and accelerates, the 
sand disperses, and the sleeve reaches its terminal 
deformation rate of about 12/s.

Thus, the dispersion gap is a measure of the 
amount of agitation required to establish steady flow 
of a mixture. For agitation rates below the dispersion 
gap, dispersa1 of the mixture cannot be maintained 
and the sample sediments. Values of the maximum 
dispersion gap for various volumetric ratios of water 
to sand are given in Table 2.

Table 2. Maximum Dispersion Gap of Sand- 
water Mixtures.

w0

0.8
0.83
0.9
1.0
1.2
1.5

Maximum
Dispersion Gap

(DK)ma,(l/s)

0
1
7

26
40
59
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Figure 6. Relations between shear stress applied to debris to deformation rate of debris within rolling sleeve for different 
volumetric water content, s 0, of water to sand. The points are averages of 4 or 5 measurements at each condition. The data 
for medium-grained sand are represented, roughly, by solid lines, which are based on theory. The lowest datum point for each 
water content indicates the maximum deformation rate and the minimum shear stress required to maintain uniform flow. For 
lower deformation rates, the sand sediments and the rolling sleeve slows or stops, so there is a dispersion gap for each 
mixture. The dashed line connecting the lower ends of the curves is the generalization of the dispersion gap for all mixtures. 
The dashed line thus marks the boundary between dispersion, above and sedimentation, below. The other heavy dashed line, 
marked "transition" is boundary between conditions where the macro-viscous resistance of the mixture dominates (to left) and 
where inertial resistance (banging together of particles) of the mixture dominates (to right).
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Matching the Flow Curves
We have drawn the solid lines in Figure 6 on 

the basis of our model of combined macro-viscous 
and inertial flow, eqs. (7b) which simplifies to

<7 r, = T/.

+A

"'+-v ">+-s n'ajc

2DXZ 
A to- P)Ni'+.v^ u'+s^ma;

 Dr ,

For mixtures of sand and water, we obtain a
w 

critical value of water-to-sand ratio of s @min = 0.77
(w+s©max = 0.56) and a value of A, = 2 x 10~~5 kg/m 
by best fitting the data in Figure 6 with theoretical 
curves defined by eq. (8a). We have adjusted the 
constants, A, and s ®min in order to closely fit the 
data. The third constant, the debris strength, T B , 
translates the curve up or down. For example, the
dashed line shown in Figure 6 for a volumetric ratio

w 
of s ©= 1.2 is given by the intercept of the
projection of the heavy solid line, along the path of 
the thin, dashed, curved line, to the stress axis. In 
this case we see that the strength is about 12 Pa. 
With our results for the sand-water mixtures we 
derive an empirical equation for the strength

(8b)

where T O = 4.5 Pa. For a volumetric ratio of s © = 
1.2 we obtain a strength value of 10.9 Pa with eq. 
(8b). I would emphasize, though, that eq. (8b) is 
empirical, so the form of the equaMon and the value 
of the constant have no physical significance.

Thus we have determined all the constants in 
eq. (8a) for the sand-water mixtures by means of the 
rolling-sleeve apparatus.

Comparison with Bagnold's Constants
According to Bagnold's eq. (2a), our constant 

A, should be proportional to the density of quartz, to 
the square of the diameter of the sand grains 
(0.00058 m)2 and to a dimensionless coefficient A, 
which is proportional to a constant and to the sine of

an angle. For the sand used in our experiments, we 
obtain a dimensionless coefficient of A = 0.025. The 
significance of the value for/4 is quite unclear. 
Bagnold (1954) estimated a value of A = 0.013 for 
neutrally buoyant spheres in water. Perhaps the 
factor of two is merely a difference in the 
formulations.

In order to explore the constants A] and /4, we 
have experimented with sand and fluids with various 
viscosities and with plastic beads with a specific 
gravity similar to that of water (Martosudarmo, 
1994). The beads are type PI05-212 polymer-bead 
produced by SoloHill Engineering, Inc7 . The 
specific gravity of individual beads is 1.03 to 1.04. 
The average diameter of the beads is 0.12 mm. The
volumetric ratio of voids to beads for loosest 

ciir
packing of the beads is beads® = 0-65-

Our results with various mixtures distilled 
and deionized water plus beads; salty water and 
beads (zero density contrast); and water, glycerin 
and sand suggest that A could be a function of the 
grain size and the density contrast of the solid and 
fluid, but not a function of the viscosity of the fluid 
or the concentration of the granular phase. The value 
of A does not depend on the concentration of 
granular phase for either beads or sand, because the 
effect of the water solid ratio is accounted for in the 
equations, with S 0min = 0.75 to 0.77 for sand and 
b®min = 0.6 for beads. For Bagnold's experiments 
with uniform spheres, Figure 7A, S 0min = 0.52.

The value of A appears to change 
insignificantly with viscosity of the fluid phase. For 
mixtures of 5% by weight of glycerin in water, the 
viscosity of the fluid is r| f = 0.008 Pa s (about 8 
times that of water) and the specific gravity of the 
fluid is 1.01. For mixture? of 25% glycerin, r| f = 
0.032 Pa s (about 32 times that of water) and the 
specific gravity is 1.06. Performing a best fit to the 
data, we determined that A = 0.03 for the mixtures 
with 5% glycerin and A = 0.04 for mixtures with 
25% glycerin. For pure water, r] f   0.001 Pa s and 
the A-value is 0.025. Thus the A-values appear to 
change insignificantly with large changes in 
viscosity.

7 SoloHill Engineering, Inc. 1919 Green Rd., Ann Arbor, 
MI 48105, (313) 665 0453. We found the polymer grains in a 
scientific supply catalogue. The grains are quite expensive 
because they have to be carefully prepared for use in various 
biological experiments, where large, clean surface areas are 
required. Our use involved relaved requirements, so we were 
able to obtain them as rejects from the manufacturer, SoloHill 
Efigineering, at a reasonable cost.
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The change in ,4-value for water-glycerin 
mixtures may correlate with slight changes in 
density contrast; as the density contrast decreases, 
the A-value increases. This is consistent with an 
increase in A-value from 0.025 for sand-water, with 
a density contrast of 1650 Kg/m3 , to 0.04 for sand- 
glycerin-water with a density contrast of 1590 
Kg/m , to 2 or 4 for bead-water mixtures, with a 
density contrast of zero to 4 Kg/m 3 .

The problem with A as a material constant is
that it is constant (A = 0.025) for water and sand at

w 
various s © values but it is constant at a very
different value, A = 4 for beads and pure water and 
A = 2 for beads and water containing 6% salt by 
weight (Sumaryanto and Johnson, 1997).

The parameter that remains constant for bead- 
water and sand-water mixtures is A,. Thus, for the 
sand and water, A = 0.025, p s =2650 kg/m2 and d = 
0.00058 m, so that A, = 2 x 10"5 kg/m For the 
beads, A = 2 to 4, ps =1040 kg/m2 and d = 0.00012 
m, so that A, = 3 to 6 x 10~5 kg/m

The suggestion that A, is constant is supported 
by some experiments with silt, for which A   \ .2 
and d = 0.000075 m. In this case, A, - 1.7 x 10"5 
kg/m. Clearly these values of A, are nearly constant, 
and A is not.

Finally, all these values determined with a wide 
range of experiments are consistent with results of 
Bagnold's experiments (Figure 7A), from which I 
obtain a value of A, = 2.5 x 10~5 kg/m. On this 
basis, I would follow McTigue (1982) in specifying 
A, rather than Bagnold's A as a material constant.

Constants A2 and a
Because we do not measure normal stresses 

with the rolling-sleeve apparatus, we are unable to 
determine the pressure coefficient, a, or the 
dispersion coefficient, A2 , in the general rheological 
model, eq. (7a), with the apparatus. Another 
experiment will have to be designed to measure 
normal-stress effects. In the absence of such 
experiments, I will use our rheological equations 
and Bagnold's experimental results to estimate the 
dispersion coefficient, A2 . Bagnold explained that he 
had to make several corrections to his experimental 
data and it appears that in the process, unfortunately, 
he discarded the information that would have 
provided us with a way of estimating the pressure 
coefficient, a.

Figure 7B shows his processed data relating 
shear stress and normal stress determined 
experimentally. The solid line is the theoretical

curve, assuming a dispersion coefficient, A2 = 7 x 
10~5 kg/m. There is considerable scatter of the data, 
though, so values ranging from 2 to 10 x 10~5 kg/m 
fall within the range of the data shown in the figure.

McTigue- Bagnold Numbers
The relevant form for the McTigue-Bagnold 

number for sand-water grain-flow materials is 
given by eq. (7f)

S /S)_ S fa

in which the macro viscosity term in the 
denominator is derived from mixing theory 
(Martosudarmo and Johnson, 1997), eq. (5c),

For the conditions of simple shearing in the 
rolling-sleeve apparatus we can rearrange the 
equation for the McTigue-Bagnold number and 
derive a simple relation for the deformation rate in 
terms of the Bagnold number

(dvjdz) = (Wa)

in which 2-s/-K2 = (dvx/dz) in eq. (7g)
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If we set the McTigue-Bagnold number equal 
to one in eq. (lOa), we can determine the conditions 
for which the macro-viscous resistance and the 
inertial terms contribute equally to the resistance to 
flow. In particular, given all the other variables, we 
can solve eq. (10) to determine the transition 
velocity gradient, (dv/dz)T, the velocity gradient at 
which the McTigue-Bagnold number is unity.

(10b)

Using the appropriate expressions for the 
parameters in eq. (lOb), we have computed the 
transition velocity gradients , (dv/dz)T, presented in 
the second column in Table 3 as a function of the 
volumetric ratio of water to sand. The transition 
velocity gradient ranges from about 0.4/sec to 
6.6/sec as the volumetric ratio ranges from 0.8 to 
1.5, so the transition velocity gradient is higher for 
the more dilute mixtures of sand, but it is very small 
for all mixtures. For velocity gradients higher than 
transition, the flow is dominated by inertial flow 
whereas for velocity gradients lower than transition, 
the flow is dominated by macro-viscous flow. 
Clearly the sand/water mixtures are dominated by 
inertial flow.

The domination of the inertial behavior is also 
reflected in the high average slopes of the flow 
curves shown in Figure 6. If the points for each ratio 
of water to sand are fitted with a straight line, we 
can measure the slopes of the lines and calculate half 
their values as the apparent viscosity. We list the 
values of apparent viscosity in the third column and 
the viscosities according to the macro-viscous 
model in the fourth column in Table 4 as functions 
of the ratios of water to sand. The viscosities are 
about an order of magnitude larger than those we 
would predict on the basis of the macro-viscous 
model, alone, given by the values from mixing 
theory, in the last column in Table 4. Clearly the 
flow resistance is largely inertial for the sand-water 
mixtures.

Properties of Sand-slurry 
Mixtures (Simple Debris)

We have performed many experiments with 
mixtures of sand, water and clay and have 
shown that simple debris has the essential 

characteristics of debris in muddy debris flows 
(Johnson, 1965, 1970, 1984; Rodine and Johnson, 
1976; Martosudarmo, 1994; Martosudarmo and 
Johnson, 1997; Johnson and Martosudarmo, 1997). 
In most of those measurements, we prepared stiff 
slurries with sufficient strength to support both 
individual sand particles and groups of sand 
particles. As a result, the simple debris behaves 
predominantly as a macro-viscous material. Only if 
the debris contained large grains would the behavior 
become inertial. For experiments with mixtures of 
sand and highly fluid slurry, though, the inertial 
behaviors become significant.

Reduction of Dispersion Gap
In general, there is no dispersion gap for the 

mixtures of slurry and sand grains of our 
experiments. Because the sand particles do not 
settle, the results are analogous to the experiments 
with neutrally buoyant beads and water or with sand 
and highly viscous glycerin solutions. The flow 
curves extend to, or nearly to, the stress axis.

In one set of experiments with the rolling- 
sleeve apparatus the simple debris consisted of the 
same sand used for the grain-flow experiments, but 
with a dilute clay-water slurry as the fluid. The
volumetric ratio of water to clay in the slurry was
w
cl@ = 14, so the slurry was very dilute; its
volumetric ratio of water was twice the flow limit 
of the clay, so the slurry would be considered to be 
highly fluid. The dilute slurry is incapable of 
supporting individual grains of 0.00058 m diameter 
as well as groups of such grains (Martosudarmo and 
Johnson, 1997). The coefficient of viscosity of the 
slurry is 0.015 Pa s (15 times that of water), the 
strength is 3.3 Pa and the specific gravity is 1.105. 
The viscosity of the slurry is similar to that of a 
mixture of water admixed with 15% by weight of 
glycerin.

8 Note that the transition deformation rate, DT, is simply 
equal to half the transition deformation rate (dv/dz)T, for the 
simple flow being considered here.

9 Defined in section on experimental materials in previous 
paragraphs.
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Figure 8. Relations between shear stress and deformation 
rate of three debris samples with volumetric ratios of 
slurry to medium-grained sand of s ® = 0.8, 0.83 and 
1.0. The slurry was quite fluid, with a volumetric ratio of 
water to kaolinite clay of cfd = 14. For all three debris 
samples the dispersion gaps are small, less than 3/sec. 
For sand water mixtures the dispersion gaps ranged up 
to 60 /s (Figure 6).

Figure 8 shows flow curves determined with 
the rolling-sleeve apparatus for volumetric ratios of 
slurry to sand of ss 0 = 0.8, 0.83 and 1.0. For all the 
flow curves there are dispersion gaps of 2/sec or 
less, below which the sand grains sediment and 
above which they disperse. The dispersion gaps for
this debris are much lower than those for sand-water

w 
mixtures, which range up to about 25/sec for a s ©
value of 1.0 (Figure 6). The small dispersion gap for 
the sand-slurry mixture, as compared to sand-water 
mixtures, is a result of the low conductivity of the 
water through the clay slurry and the low 
conductivity of the slurry through the sand. We have 
shown elsewhere (Martosudarmo and Johnson, 
1997) that sand grains are supported for short times 
en masse by the slurry because the slurry is unable 
to escape quickly from the pores in the sand. The 
fluid conductivity of sand with respect to slurry is 
more than an order of magnitude lower than the 
hydraulic conductivity of the sand with respect to 
water.

Bingham Viscosity and Strength of Simple 
Debris

We have determined the rheological properties 
of the simple debris as a function of volumetric 
ratios of slurry to sand and of water to clay. Thus the 
macro viscosity of simple debris can be derived on 
the basis of mixing theory (Martosudarmo and 
Johnson, 1997)

(11 a)

si where s © is the ratio of the volume of slurry to the
volume of sand in debris. The critical value of this

si volumetric ratio, S 0mj n , tor fine-grained Ottawa
Sisand is about 0.77. The value for S 0min is somewhat 

larger than the volumetric ratio for loosest packing 
of dry sand, alone, which is ag F© = 0.7. Comparing 
various values for packing given in Table 1, the 
critical volumetric ratio we determined for Ottawa 
sand is only slightly smaller than the volume ratio at 
the critical state of the sand.

The relation between Bingham viscosity, 
^slurry an<^ water content, ^j©, of a slurry can be 
closely calculated with the empirical relation

^slurry =

3.1 (lib)

using the two arbitrary constants are r| 0 = 0.16 Pa s; 
cl®rri = 3.1. The critical water-clay ratio of 3.1 and 
the reference viscosity of 0.16 Pa s have no physical 
significance. Indeed, equation (1 Ib) is invalid for 
water-clay ratios less than 3.1 and greater than 19, 
even for the clay used in our experiments.

For the Bingham fluid the friction angle is zero, 
so the cohesive strength is equal to the Bingham 
strength, C = T B . We have derived an expression for 
the Bingham strength of debris in terms of the 
Bingham strength of the slurry, but only empirically. 
The relation is,

'slurry ~ 5/@_5/0^

(lie)

where CT is an empirical constant and 
critical or reference value of slurry-sand ratio.

s\r\   s ©T isa
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Table 3. Transition velocity gradients separating macro-viscous and inertial flow regimes for sand- 
water mixtures.

Volumetric Ratio

:©
0.78
0.8

0.83
0.9

1

_______L5_____ 
* r| f = .001 Pa s. Note: NMB = 1.0 for all

Transition Velocity 
Gradient

Maximum
Dispersion Gap

of Velocity Gradient
(dvx/dz)T (l/sec) 

1.2
2.4
4.9
8.1
13.4
19.3

[(dvx/dz)g] max

0
2
\A
52
118

(I/sec)

Table 4. Rheological properties of sand-water mixtures.

W0 
s^

0.8
0.83
0.9
1.0
1.2
1.5

Apparent strength 
(intercept of straight line) 

T B (Pa)

74.0
61.6
34.8
5.2
1.0
0.9

Apparent Viscosity 
(slope of straight line) 

T| 0 (Pas)

2.2
1.6
0.8
0.5
0.3
0.1

Macro Viscosity 
(Mixing Theory) 

rimix (Pa s)

0.179
0.090
0.043
0.025
0.014
0.009

The straight line that best-fits the data has 
parameters, CT = 3.3 and SS 0T = 0.6. The reference 
value of S 0T = 0.6 is consistent with relatively 
closely packed grains (Table 1). It is between the 
loosest and densest packing of the sand in the debris.

The shear strength of the slurry is determined, 
in turn, with an empirical equation of the same form,

'slurry

3.1 (lid)

with T O = 35 Pa; cNj©T = 3.3. Again, we would 
emphasize that eqs. (11 b), (11 c), and (lid) are 
empirical. Although eq. (1 la) is theoretical, it was 
derived for grains of a single size.

Inertial Viscosity of Simple Debris
We have use the combined macro viscous and 

inertial model in combination with eqs. (11) to
determine the inertial coefficient for the debris, 

A,. By adjusting the value of A, and the values of 
shear strength, we have produced the curves shown 
in Figure 8 and, on this basis, have selected an 
inertial coefficient of A, = 10" kg/m. This is much 
smaller that the value of A, = 2 x 10~5 kg/m selected 
for fluid phases of water or glycerin-water mixtures 
and solid phases of plastic beads or quartz sand, 
reported in previous paragraphs. The lower value, 
however, provides a much better fit to the data; the
curves constructed with the larger value are much

si 
more curved at s © values of 0.8 and 0.83 than is
suggested by the data for the slurry used in our 
experiments.
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Transition Velocity Gradients
Transition velocity gradients, calculated with 

eqs. (10) and (11), are consistently very high for the 
simple debris, so the flow should be macro viscous.

VELOCITY PROFILES FOR 
CHANNELIZED SAND-WATER 
GRAIN FLOWS AND SLURRY- 
SAND DEBRIS FLOWS

Profiles According to Theoretical 
Analysis

Governing Equations

We can determine idealized velocity 
profiles for steady gravity flow of the 
idealized material down a channel of 

great width with the constitutive equations and the 
equilibrium equations. These idealized velocity 
profiles can ',hen be compared to those of actual 
flows, shown in Figure 9.

Equilibrium Equations
The relevant equilibrium equations are

(12a)

Examples of Velocity Profiles

Velocity profiles have been determined in a 
wide variety of grain-flow and debris- 
avalanche materials (Takahashi, 1978, 1980, 

1987, 1991; Chen, 1985, 1987). For example, Figure 
9A shows profiles of velocity, normalized with the 
maximum velocity at the flow surface, as a function 
of depth below the surface of grain flows or debris 
avalanches (called "debris flows") described by 
Chen (1987). The doubly-curved profile, convex 
near the surface and concave at depth is perhaps 
characteristic of such flows. Figure 9B shows a 
horizontal profile of a debris flow moving in a 
channel about 2 m wide and the flow was about 1 m 
deep. The debris is clay-poor, crushed Pelona schist 
(Rodine and Johnson, 1976) in a 1969 debris flow at 
Wrightwood, California (Johnson, 1970, 1984). 
Whereas in Figure 9A we are examining a vertical 
profile, in Figure 9B we are examining a horizontal 
profile. The vertical velocity prof le in the latter 
case, though, probably would be roughly equivalent 
to either half of the profile, with the upper surface 
corresponding to the centerline of the channel. Thus, 
we visualize a velocity profile that is quite different, 
with a distinct plug of nondeforming debris near the 
surface and a profile that is consistently convex 
throughout the depth, as documented in the first 
experimental and mechanical analysis of debris flow 
(Johnson, 1965).

sin($) (12b)

in which (3 is the slope angle of the channel and [s+s 
©y.s. + /+&y>] is the unit weight of the debris, y is 
the unit weight of a solid or fluid phase.

Rheological Equations
The rheological equations, eqs. (7), simplify 

markedly for one-dimensional channel flow. Putting 
the coefficients into dimensionless groups, and 
rearranging, the equations become,

(12c)

l^/hy^dv/dz) n, } -JKJkikkJdz)
c s~\ c /-v 1 i I

= far ) //7Y.v (12d)
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Figure 9. Velocity profiles for a grain flow and a debris flow. A. Vertical 
velocity profile for some grain flows described by Chen (1987). The top of curve, with 
maximum velocity, is at top of flow; the bottom, with zero velocity, is at base. The 

doubly-curved profile convex near surface and concave near base is typical of grain 
flows. B. Horizontal velocity profile of surface of a natural debris flow in a channel at 

Wrightwood, California. Velocity is zero at edges and maximal in center. The "plug" 
of uniform velocity in center is typical of muddy debris flows.
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in which, for sand-water mixtures, T O = 4.5 Pa.

Movement of Pore Fluids
When we add a pore fluid to the flowing 

granular solid we introduce, of course, many 
complexities. In order to describe the movement of 
the pore fluids, we need to couple the Theological 
and fluid  flow equations. For flow in a wide 
channel that we are considering here, the volumetric 
ratio of fluid will change with time and from place 
to place according to the equation,

= dfKdeh(dy/dx)]/dx

hydraulic conductivity of the kaolinite clay (Figure 
4), essentially locking the water in the clay slurry. 
Also, it is a result of the inability of the slurry to 
escape at all or to quickly escape from the pores of 
the sand as we have documented elsewhere 
(Martosudarmo and Johnson, 1997).

Thus, for the debris  flow end member we will 
assume that the conductivities with respect to water 
and slurry are so low that the fluid cannot escape at 
all in the time frame of flowage. For the grain-flow 
end member we will assume that the hydraulic 
conductivity is so high that the pore-fluid pressures 
are dissipated immediately.

No doubt there will be interesting conditions 
between these extremes, but we have postponed 
analysis of intermediate conditions.

(12e)

The parameters were defined in the vicinity of eq. 
(6c).

We will consider three special cases of flow in 
a wide channel in following paragraphs. One relates 
to a dry granular solid, so that eq. (12e) is of no 
interest. This problem was solved by McTigue, and 
we will briefly review it. The others involve a 
granular solid with a pore fluid, so that eq. (12e) is 
relevant. We can learn a great deal about the range 
of behaviors, though, if we consider end members of 
fluid flow in the pores. These end members 
correspond, approximately, to pure grain flow or 
debris avalanche on the one hand and pure muddy 
debris flow on the other. Clearly there is a 
continuum, and for the continuum we must address 
eq. (12e).

In following paragraphs we consider end 
members because the analyses are simpler, but there 
are practical reasons as well. As we have shown 
elsewhere (Martosudarmo and Johnson, 1997), an 
important element of the behavior of debris flows 
and debris avalanches is the facility with which the 
pore fluid can escape from the granular matrix. In 
the ideal grain flows, there is only water and sand, 
and the sand has a relatively high hydraulic 
conductivity (Figure 4). The strong dispersion gap 
evident in the rolling-sleeve experiments with sand- 
water mixtures is a result of the relatively high 
hydraulic conductivity of the pore water with 
respect to the sand. The insignificant dispersion gap 
in the case of simple debris with a fluid of slurry is a 
result of the remarkably, perhaps surprisingly low

Boundary Conditions
Whatever the rheological properties and the 

mechanical equations, we must specify appropriate 
boundary conditions. I have selected the following 
boundary conditions for the present analysis. The 
boundary conditions at z = 0, that is, at the surface 
of the flow, are

°zz = 0; CF,, = 0 pf = 0

For convenience I will assume that the volume 
fraction of solids is at the critical-state value at the 
surface of the flow, where the pressure on the solids 
is zero. Thus, at z = 0 we have that,

s+f s+f

At the bottom of the plug, at z = - z0 , that is, at 
the bottom of the plug,

av, =T

S 2 s _ 2 ia,, = -a(s+j& -s+f&cs) - n= 0

At the base of the flow, at z = - h, or, where the 
concentration becomes equal to the critical value, 
that is, at s+tB = s+f0max
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v = 0

McTigue Solution
McTigue (1982) has solved the special case of 

eqs. (12) where the viscosity and unit weight of the 
fluid phase are zero and the strength is strictly 
frictional, so that, instead of Bingham strength in eq. 
(12d) one has the frictional strength,

-a s+t (13a)

Then, by eliminating the square of the deformation 
rate between eqs. (12c) and (12d), and solving eqs. 
(12a) and (12c), he derives an expression for the 
volume fraction of sand as a function of depth, -z,

s+t
-z/L (13b)

where v0 is the velocity at the upper surface. For 
other shapes of velocity profiles, the reader is 
referred to McTigue's (1982) paper.

Undrained Flow
Muddy debris flows tend to flow in channels 

under undrained conditions because of the inability 
of the slurry to escape quickly from the pores of the 
granular phase and because of the frequent mixing 
of debris at the front of the flow and where the 
debris moves over irregularities in the channel 
bottom (Johnson, 1970).. In these flows the pore- 
fluid pressures will be high; they will be supporting 
much of the load of the sediment.

In term's of the theory, we would characterize 
undrained flow with eq. (12c), such that

where L is a characteristic length,

2a^^ \\^i'^y -""V m x
^ U,^r,RJ/A /A 1 ^^,^R \ LJL )

The maximum depth of a flow, dmax , can be 
derived from eq. (13b) in terms of the maximum 
concentration of sand,

a,, + PI + A2
dvjdz

(14a)

That is, the pore-fluid pressure adjusts itself so that 
it cancels the overburden pressure and the dispersive 
pressure, and the concentration of grains remains at 
the critical state throughout the flow.

The condition of undrained flow considerably 
simplifies the solution of the differential equations 
because we can immediately solve the equilibrium 
equations, eqs. (12a), (12b),

(13d)

McTigue also derives various expressions for the 
velocity distribution, some of which resemble the 
convex-concave profiles shown in Figure 9A and 
some of which resemble the convex profiles shown 
in Figure 9B, but without the plug. McTigue 
indicates that, if the characteristic length, eq. (13c) is 
much larger than the depth of flow, then the 
concentration is independent of depth, eq. (13b), and 
the velocity distribution is of the convex form,

VX = Vr/^ (13e)

= ^2 cos ft) (14b)

Gv,    z sin

sin (14c)

The remaining flow equation, eq. (12d), 
becomes, in dimensionless form
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(dvjdz*? + TW (dv^dz*) + [z* sin®) + W = 0 
(14d)

in which the dimensionless variables are

=_
s+ jP>] +f®'

z* = z/h (14e)

The thickness of the plug, the region that is not 
shearing, is obtained by setting the last term in 
brackets in eq. (14d) equal to zero,

(15a)

and the velocity distribution for the flowing debris 
below the plug is obtained by solving and 
integrating eq. (14d),

(15b)

Although the expression for the velocity 
distribution in eq. (15b) for undrained flow of debris 
is more complex than the special case derived by 
McTigue for the flow of dry grains, eq. (13e), the 
distributions are of the same form. The velocity 
profile consists of a plug and a convex velocity 
profile below the plug.

The idealization of the undrained flow of debris 
should closely describe the velocity profile in the 
vicinity of the snout of a debris flow, where the 
debris moves much as in the rubber sleeves in our 
experiments and much as a caterpillar tread. As a 
debris flow moves along, dilated debris near the 
surface of the flow in the snout region is quickly 
turned over to become the debris in the shear zone 
near the base of the flow. If the conductivity of the 
debris with respect to the fluid phase is low, the 
debris near the base should remain dilated and 
therefore quite fluid. As the snout travels far down 
the channel, though, the debris left near the base will 
contract or expand, as the fluid phase is expelled or 
sucked inward, depending on the normal stress and 
on the velocity gradient. The velocity distribution, 
therefore, can be quite different far back from the 
snout as compared to the snout region of a debris 
flow.

Figure 10A shows the velocity profile, 
determined by eq. (15b), with the parameters 
measured for simple debris, consisting of dilute 
slurry and sand. The parameters for the solution are: 
P = 10°, h = 0.1 m, s+s i©cs = 0-79 and JJ0 = 14. The 
properties are as determined experimentally and 
described in previous pages. The maximum velocity 
for these conditions is 4.9 m/s. The profile has the 
classic shape (Johnson, 1965, 1970) for debris 
flows, with a prominent plug above and a roughly 
parabolic profile below. Putting the mirror image of 
this profile on top of the profile shown in Figure 
10A, we obtain the kind of surface profile of the 
debris flow shown in Figure 9B.

Figure 10B shows the velocity profile 
according to parameters determined experimentally 
for sand and water, grain-flow materials. The 
parameters for the solution were the same as those 
for the simple debris except, of course, the 
volumetric ratio of water to clay. The maximum 
velocity for the grain flow is 6.9 m/s. The profile has 
the same shape as that determined by McTigue 
(1982) for dry grain flows, as expressed in eq. (13e).

It is important to realize, though, that we are 
making a serious (weak) assumption in deriving eqs. 
(14) and in determining the velocity distribution for 
a grain flow. We are assuming that, somehow, the 
flow is undrained. This is a reasonable conclusion 
for the muddy debris flow, but definitely not for the 
grain flow. The grain flow would drain quickly so 
that the excessive pore-water pressures would 
dissipate, and the flow might stop. The typical
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Figure 10. Theoretical vertical velocity profiles according to theory of grain flow and debris flow, 

assuming undrained conditions. A. Velocity profile for simple debris with dilute slurry in matrix of fine-grained 

sand, according to theory and properties measured for the simple debris and slurry. The volumetric water content of 

the slurry was 0 = 14 and the sand content of the debris was s 0   0.79. The slope angle of the wide channel was

taken to be 10° and the depth of the flow was taken to be 0.1 m. The maximum velocity for these conditions is 4.9 

m/sec. The profile has the classic shape for muddy debris flows, with a prominent plug and a parabolic profile below 

the plug. B. Velocity profile for grain-flow material. The volumetric content of sand was the same, s 0 = 0.79.

The maximum velocity for the grain flow was 6.9 m/sec. The profile has the same shape as that of the simple debris 

flow, except the plug is much less prominent. As indicated in the text, though, the assumption of undrained flow for 

such a grain flow is inappropriate, so this profile is largely irrelevant to grain flow.
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debris flow would remain undrained, at least in its 
snout region, and would flow there much as 
described in Figure 10A.

These conclusions are supported by 
calculations and measurements of conductivity of 
simple debris with respect to water and conductivity 
of sand with respect to slurry. The conductivity of 
slurry with respect to sand, induced by settling of 
the sand, is negligible for slurry with volumetric 
ratios of water to clay of ̂ © = 14 and volumetric

si siratios of slurry to sand of even s @ = 5, let alone s © 
= 0.78 as assumed here (fig. 5.6, Martosudarmo, 
1994).

The conductivity of debris with respect to water 
would be on the order of wKdeb = 10~ m/s (ibid.). In 
contrast, the conductivity of water through sand at 
the same fluid to solid ratio (^0 =0.78) is about VVKS 
= 10~J m/s (ibid., Figure 4). This is three orders of 
magnitude higher than the conductivity of water 
through the sand containing dilute clay-water slurry.

The drastic difference in conductivity of the 
grain-flow material and the debris-flow material 
explains not only the large dispersion gap in grain 
flow and the minor dispersion gap in debris flow, 
but it also explains the ability to maintain debris 
flow and the inability to maintain grain flow on low 
slopes.

Completely Drained Flow
In general, we cannot assume undrained 

conditions of the fluid phase of clay and water in 
debris flows and grain flows so that we must 
account for differences of concentrations of grains 
within a flow and for movement of the fluid phase. 
In order to describe the movement of the fluid phase 
and the pressure in the fluid phase, we must couple 
the interstitial fluid flow equation, eqs. (6), with the 
rheological and equilibrium equations, eqs. (12). 
This makes the problem a transient, time-dependent 
problem.

There is, however, a second interesting but less 
complicated case of debris flow or grain flow where 
the fluid phase has completely equilibrated, so that 
there is no excess or deficit of pressure in the fluid 
phase. We would expect this case to be relevant to 
most flows in which the conductivity of the debris 
with respect the fluid phase, fKdeb , (eq. 6a), is very 
high, such as water moving through sand. Also, we 
would expect it to apply satisfactorily to conditions 
even in some debris flows, but only well back from 
the snout of a debris flow moving down a long 
channel. Near the snout and in channels where there

are periodic waterfalls that mix the debris, the flow 
conditions are probably best described with the 
model for undrained flow, described above. If, 
however, the debris has been shearing long enough, 
without turning over, the excess pressure in the fluid 
phase should dissipate and the undrained condition 
should pertain. In such cases, the pressure within the 
fluid phase is strictly hydrostatic, and

dp/dz = - Y/ cos(fi)

A Numerical Method
Even for the steady state, though, the general 

governing equations for the macro-viscous, inertial 
material, eqs. (12), are highly nonlinear. Fortunately 
we can use the following strategy to produce a 
solution. Wo work from the surface downward to 
obtain a solution for the velocity gradient, the 
stresses and the concentrations. Then we work from 
the bottom upward to obtain the velocities. It is 
convenient to transform the equilibrium equations, 
eqs. (12a) and (12b), such that we can integrate eqs. 
( 12a) and (12b) directly,

= - yv

a*: = - CY.V

(16a) 

(16b)

where

is a transformed coordinate in the direction normal 
to the surface of the flow. We cannot, however, 
directly integrate the equation for the pressure in the 
interstitial fluid, rather we must solve the equation

(16d)

which is coi-,)led to the other equations that involve 
the concentration distribution.

Substituting the transformed coordinates into 
eqs. (12c) and (12d), using eqs. (12f), (16a) and
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(16b), and putting the equations in dimensionless 
form,

7 ( I ^ '

(16e) = C/h; A* =
A,

+ eq

(16J)

The dimensionless variables are chosen to expose 
the variables and subdue the constants,

In solving these equations, we assume the 
conditions at the upper surface mentioned in 
connection with eqs. (12), including that the 
concentration, s+f ), is at the critical state value, 
s+i® cs> ar>d that the velocity gradient is zero. Then, 
during the first iteration, we assume that the 
concentration remains at the critical state value for a 
small incremental distance, C,, below the surface. 
During this iteration, we solve eq. (16d) for the fluid 
pressure, then eq. (16f) for the velocity gradient, 
dvx/d^, and eq. (16e) for the concentration, s+1®. 
The velocity gradient is zero unless the shear stress 
exceeds the shear strength, which, itself, is a 
function of the concentration. This ends the first 
iteration.

a =

(Figure on next page)

Figure 11. Theoretical velocity profiles for sand water, grain-flow materials, using material properties determined 
experimentally for sand water mixtures. In all three runs we use the dimensionless dispersion coefficient computed using 
Bagnold's data for the dispersion coefficient and our data for the macro viscosity. Normalized theoretical velocity profiles. 
Thickness of flow 0.1 m. Thick curve is velocity profile. Thin curve is volumetric ratio of fluid to solid, N 0, which begins at the 
critical state value at the surface. Dimensionless dispersion coefficient o/A* = 2.8. The parameter a is unknown, so two 
different values of the dimensionless variable, a*, are assumed for the runs. In the first two runs, A and B, the difference is the 
slope angle and a* = 10. A. The slope angle is 8°. The depth of the flow is equal to the maximum depth so that the entire 
thickness of material is flowing, except for a small plug at the surface of the flow. The velocity profile has the convex shape 
that we saw in undrained flow. The flow is sufficiently intense for the mixture to remain dispersed at depth. The maximum 
velocity is very large, about 20 m/sec. B. The slope angle is 4°. The depth of flow is greater than the maximum depth so that 
the lower part of the debris cannot flow it produces a sediment plug. The sediment plug is a result of the inability of the 
mixture to remain dispersed at depth, so the sand sediments there. The shape oftf. ' velocity profile is convex in the upper part 
and concave in the lower part, above the sediment plug, as is characteristic of dry flows. C. In this run the dimensionless 
variable, a.*   1, is reduced by an order of magnitude, while keeping the dispersion coefficient high, to explore the effect of 
the former on the velocity profile. As a result of the low pressure coefficient, the volumetric concentration of fluid decreases 
from the critical state to a maximum concentration at about middepth. There is an obvious nondeformingplug in this part of 
the flow. Below middepth, the volumetric concentration of fluid increases because of the high dispersion coefficient, and the 
higher shear stress there, so the lower part of the flow becomes a zone of high shearing.
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Using the new estimate of the concentration, 
we repeat the procedure described above for eqs. 
(16d), (16e) and (16f), obtaining an improved 
estimate of the fluid pressure, the velocity gradient 
and the concentration at the same depth, ^. We 
iterate the solution six times and then numerically 
integrate to compute the distances, z, corresponding 
to the distances, C,.

Finally, we numerically integrate the velocity 
gradient from the base of the flow where the 
velocity is zero upwards to the free surface of the 
flow, using Newton-Cotes quadrature (Milne, 1949, 
p. 122).

Grain Flow
Figure 11 shows theoretical velocity profiles 

for sand-water mixtures. The mixtures have the 
properties determined experimentally with the 
rolling-sleeve apparatus, so that some of the 
dimensionless parameters are r|* = 0.004; T* O = 
0.001. To obtain a solution, we must assume two 
other parameters, A2 and a. For Figure 11A and 
Figure 1 IB we assume that the dimensionless 
dispersion coefficient A* = 2.8 and the 
dimensionless pressure coefficient a* = 10. The 
dimensionless dispersion number is based on 
measurements made by Bagnold (1954). The 
dimensionless pressure coefficient is merely 
selected. Bagnold's measurements provide no 
guidance.

Figure 11A shows a velocity profile for a sand- 
water grain flow with a thickness of h = 0.1 m 
flowing down a slope inclined at an angle of 8°. At 
this slope angle, the maximum depth is equal the 
actual depth, so the entire thickness of sand-water 
mixture is flowing, except for a small strength plug, 
about 0.08 h thick, at the top of the profile. The 
strength plug is generally missing from analyses of 
grain flows and dry flows (e.g., Takahashi, 1991). It 
is a result of the strength of the debris and it plays an 
important role in muddy debris flow (Johnson, 1965, 
1970). The velocity distribution has the 
characteristic, convex shape that we obtained from 
the solution for undrained flow. Indeed, the 
distribution of volumetric ratios of fluid to solid, 
shown with the thin line, indicates that the 
volumetric ratio starts at the critical state value of
w
s © = 0.79 at the top, decreases slightly with depth 
and then reverses and increases slightly to a value of 
about 0.83 at the bottom. Thus the flow is 
sufficiently intense for the sand to remain dispersed

at depth. The maximum velocity is very high, 
however, about 20 m/s, so the flow probably is too 
rapid for laminar flow to pertain.

Figure 11B shows the same mixture, with the 
same properties, flowing down a channel with a 
shallower slope, in this case p = 4°. The maximum 
velocity is an order of magnitude smaller. The 
distribution of velocity is quite different from the 
flow on the higher slope (Figure 11 A) in two 
respects. The first difference is that the profile has 
convex upper and concave lower shapes that are 
characteristic of flow of dry granular solids or 
granular solids and water (e.g., Figure 9A; McTigue, 
1979; Takahashi, 1991). The strength plug at the top 
is a more prominent feature of the flow on the lower 
slope. Within the upper part, the velocity decreases 
nearly linearly with distance below the strength plug 
and becomes zero at a depth of about 0.75 h where 
the sand locks up.

The second difference is the occurrence of a 
sediment plug in the lower part of the flow. The 
sediment plug is quite different from the strength 
plug. A sediment plug forms if lower part of the 
material is unable to flow because the mixture has 
consolidated to the extent that the mixture locks. 
The formation of the sediment plug is closely related 
to the dispersion gap that we described in 
connection with the experiments with the rolling 
sleeve. They both are a result of sedimentation.

For the example being studied in Figure 1 IB, 
the deformation rate (shear stress) is inadequate to 
disperse the sand at depth as a result of the 
combination of a dispersion coefficient of A* = 2.8 
and a pressure coefficient of a* = 10. For these 
conditions, the volumetric ratio of water to sand s © 
increases downward from the critical state value at 
the top to the minimum concentration at a depth of 
0.85 h. The sand sediments and locks up at depth 
below 0.85 h while the mixture in the upper part 
continues to flow.

Thus, there is a minimum slope angle for flow 
of the mixture 0.1 m thick in a channel without a 
sediment plug forming. This minimum slope angle 
is closely related to the maximum deformation rate 
that we have termed the dispersion gap. For the 
particular mixture studied here, and for the assumed 
dispersion coefficient A* = 2.8 and a* = 10, the 
minimum slope angle is 4.3°.

In comparing Figure 11A and Figure 1 IB we 
note that the shearing rate is sufficient at the higher
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Figure 12. Theoretical velocity profiles for slurry-sand, simple debris-flow materials, using material 

properties determined experimentally. Thick curve is velocity profile, which is convex throughout depth. Thin curve
si w

is volumetric ratio of fluid to solid, S 0. Thickness of flow 0.1 m. Volumetric ratio of slurry fluid phase was c,0 = 

14. Dimensionless dispersion coefficient of A* = 2.8. The dispersive coefficient and the pressure coefficient are the 

same as those used to analyze grain-flow in Figure 11, except the pressure coefficient was reduced by only a factor 

of five, not ten, for part C. A. The simple debris is flowing down a relatively steep channel, at a slope angle of 15°. 

The maximum velocity is 19 m/sec. There is a distinct plug, above. This profile is similar to that of an undrained 

debris flow shown in, but the maximum velocity and slope angle are much larger for the drained flow considered 

here. B. At the lower slope angle of 11.2°, the flow is nearly all plug, and the flow is essentially sliding on the 

channel bottom. The maximum velocity is only 0.01 m/sec. C. For the profile shown here, the pressure coefficient 

has been reduced by a factor of five, and the debris markedly disperses near the base, so the debris still is essentially 

sliding, but it is sliding at a much higher rate, about 18 m/s.
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slope angle (Figure 11 A) to disperse the sand grains 
so that the volumetric ratio of fluid to sand increases 
with increasing depth. The shearing rate is 
inadequate for the lower slope angle (Figure 1 IB) to 
maintain dispersion of the grains below a certain 
depth so the volumetric ratio of fluid to sand s @ 
decreases there and the sand eventually locks. Only 
the upper part of the flow can continue.

The different effects of the pressure coefficient 
and the dispersion coefficient can be visualized by 
keeping the dispersion coefficient, A*, high at 2.8, 
but lowering the pressure coefficient a* by an order 
of magnitude to 1.0, as in Figure 11C. A slope for 
which flow occurs is 6.6°. As a result of the low 
pressure coefficient, the volumetric concentration of 
fluid S 0 decreases abruptly from the value of the 
critical state at the surface to the minimum value at a 
shallow depth and throughout the strength plug. The 
entire upper part of the flow is a strength plug. At 
the base of the plug, as a result of the high 
dispersion coefficient, the volumetric concentration 
of fluid increases and the velocity gradient 
increases, so the lower part of the flow becomes a 
zone of high shearing. The velocity of the plug is 
high, about 37 m/s.

Thus the pressure coefficient determinesJiow 
quickly the volumetric concentration of fluid s @ 
decreases with overburden pressure whereas the 
ratio of the dispersion coefficient und the pressure 
coefficient determines how much the volumetric 
concentration of fluid increases with rate of shearing 
deformation.

Note that there are two interesting 
consequences of this combination of high dispersion 
coefficient and low pressure coefficient. First, the 
slope angle, P, must be a little higher for flow to 
occur at all when the pressure coefficient is low. 
With the lower pressure coefficient, the minimum 
slope angle is about 6.4°, whereas with the higher 
pressure coefficient, flow occurred on a slope of 4° 
(Figure 1 IB). Second, the dispersion is very high 
near the base of the flow where the ratio of fluid to

w
solid s @ reaches the high value of more than 1.4 
(Figure 11C). As a result, there is a deep strength 
plug, no sediment plug and a thin zone of intense 
shearing. The strength plug scoots along quickly on 
the thin zone of shearing at the base of the flow. For 
a slope angle of 6.6° the maximum velocity is 37 
m/s. For a slope angle of 6.8°, the maximum 
velocity doubles, to about 70 m/s.

Debris Flow
We have seen that the effect of drainage of the 

pore fluid and the resultant dissipation of pore-fluid 
pressures has a marked effect on the flow of grain- 
flow materials. The same is true for simple debris, 
consisting of sand and a fluid phase of clay and 
water. We have analyzed the flow of simple debris 
containing dilute slurry under drained conditions. 
We emphasize, though, that drained conditions 
should pertain to debris flow only if a debris flow is 
moving quite steadily through a channel, without 
mixing, so that the excess pore pressures developed 
deep in the flow can dissipate. Figure 12 shows a 
solution for drained flowage of simple debris with 
highly fluid slurry. The mixtures of sand and slurry 
at various depths in the flows have the properties 
determined experimentally with the rolling-sleeve 
apparatus, so that r|* = 0.13; T* O = 0.004, y* = 0.42. 
Again, we assume values for the dispersion 
coefficient, A2 and the pressure coefficient, a, in 
dimensionless numbers. As with the sand-water 
mixtures, we assume a dispersion coefficient of A* 
= 2.8 and a pressure coefficient of a* = 10.

Figure 12A shows a velocity profile for a sand- 
slurry debris flow with a thickness of h = 0.1 m 
flowing down a slope inclined at an angle of p = 
15°. The entire thickness of the debris is flowing, 
but there is a distinct, strength plug above, about 
0.04 m thick, which closely resembles the plugs in 
debris flows (Figure 9B). Below the plug, the 
velocity distribution closely resembles that of a 
viscous fluid. The distribution of volumetric ratios 
of fluid to solid is shown with the thin line. The ratio 
decreases slightly within the plug, from the critical 
state value of s @cs = 0.78 at the surface to about 
0.75 at the base of the plug, and then increases 
within the shearing debris to about 0.85 at the base 
of the flow.

This profile closely resembles that for simple 
debris flowing under undrained conditions, and 
shown in A, but the slope angle and the maximum 
velocity are much higher. For the undrained flow the 
slope angle is 10° and the maximum velocity is a 
docile 4.9 m/'s. For the drained flow the slope angle 
is 15° and the maximum velocity is 19 m/s.

Figure 12B shows the same debris, with the 
same parameters, flowing down a channel with a 
shallower slope of P = 11.2°. The strength plug is 
much thicker, comprising most of the depth of the 
flow. The maximum velocity is low, about 0.01 m/s. 
The slope angle of 11.2° is the minimum slope angle 
for flow sliding really of the debris. Another
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difference is visible in the distribution of volumetric
si 

ratios of slurry to sand, s ®. In the more steeply
sloping channel, the velocity gradient below the 
plug was high enough to disperse the sand, and the 
dispersion increased with depth. In the more 
shallowly sloping channel the sand consolidated, 
reducing the volumetric ratio of slurry to sand from 
the critical-state value of 0.79 at the surface to the 
minimum value of 0.7 at a depth near the base of the 
flow. Near the base of the flow, though, the shear 
stress became great enough to deform the mixture 
and flow occurred within a thin film or layer near 
the base of the flow, much like a fault.

Figure 12C shows the same debris except the 
dimensionless pressure coefficient a* has been 
reduced from 10 to 2. The maximum velocity is 
about 18 m/s. As a result of the lower pressure 
coefficient, the debris disperses markedly near the 
base of the flow, producing a thin shear zone that 
accommodates rapid translation of the strength plug. 
The slope angle is somewhat lower, 13°, but the 
velocity is about the same as high as that in the flow 
shown in Figure 12A on a 15° slope.

CONCLUSIONS

A combination of the macro-viscous model 
for the viscosity of simple debris (Johnson, 
1965, 1970, 1984; Rodine and Johnson, 

1976; Martosudarmo and Johnson, 1997) and 
Bagnold's inertial model for the inertial behavior of 
dry granular solids, as developed by McTigue 
(1982), can account for the rheological properties of 
a relatively wide variety of mixtures of water, clay 
and sand. The combined model should be given 
further consideration in studies of grain flows, 
debris avalanches and debris flows because it 
provides a unified approach to the description of the 
rheology of the masses involved in these different 
processes. The model accounts well for effects of 
changes of viscosity and strength of the fluid phase 
as well as changes in concentration of the granular 
phase, at least for quartz silt, medium-grained 
quartz sand and fine-grained plastic beads with the 
density of water.

A McTigue-Bagnold number is introduced as a 
criterion for distinguishing conditions under which 
macro viscous and inertial behaviors predominate. 
Our experimental measurements and calculations of 
McTigue Bagnold numbers as functions of 
concentration of grains indicate that inertial effects

will predominate if deformation rates are greater 
than about 10/sec for grain flows with volumetric 
ratios of water to medium-grained sand of s® = 0.8 
and greater than about 22/sec at s© = 1.0. For dilute 
slurry, with a viscosity about 15 times that of water 
and a strength of 3 Pa, deformation rates must be 3 
to 6 times higher for inertial effects to predominate. 
Deformation rates must be greater than about 30/sec 
for I® = 0.8 and 120/sec at s© = 1.0.

Solutions for flow of the grain-flow mixtures 
of sand and water and simple debris-flow mixtures 
of sand and slurry indicate that the velocity profiles 
should be quite different for these two types of 
materials. Indeed, the velocity profiles for 
reasonable solutions for the grain flows indicates the 
characteristic doubly curved, convex upper and 
concave lower profile, with a small strength plug at 
the flow surface. In this respect, the profiles are 
similar to those obtained by Takahashi (1991) and 
Chen (1987) for mixtures of granular solids and 
water (e.g., Figure 9A). The velocity profiles for 
reasonable solutions for simple debris have the 
characteristic singly curved, convex profile, with a 
bold plug. These profiles are thus similar to the 
profiles that characterize debris flows, as for 
example the one shown in Figure 9B.

The research reported here goes a long way 
toward re-orienting our early research on debris 
flow. According to a critical review of mechanical 
analyses of debris flow by Iverson and Denlinger 
(1987), a definite weakness of our early work was 
the focus on the statics of debris flow at the expense 
of ignoring the dynamics. According to Iverson and 
Denlinger, the viscoplastic conceptualization of 
debris flows . . . "is founded largely on the idea that 
a continuous, muddy, matrix phase gives the debris 
buth strength and viscosity, and these matrix 
properties control the mechanical behavior of the 
flow." Furthermore,

the fundamental shortcoming of the viscoplastic 
debris-flow theory is that it makes no provision for 
dynamic particle interactions with one another or 
with the fluid-like matrix. Such interactions are 
obvious to field observers [of debris flows]. . . Thus 
... the viscoplastic theory is at best incomplete. A 
more [nearly] complete theory would explain 
observations that the viscoplastic theory explains, 
and . .. would also account for the interactions of 
discrete debris-flow constituents.

Iverson and Denlinger point out that the 
vertical profiles for debris flows computed with 
Bagnold's model or with various modified versions 
of Bagnold's model assumed by Takahashi (e.g., 
1980, 1991) and Chen (e.g., 1987), have a peculiar



concave-upward slope (Figure 9A), which does not 
simulate the rigid plug that characterizes debris flow 
(Figure 9B). Iverson and Denlinger conclude that, 
although the uniformly-dispersed grain-flow model, 
such as that suggested by Chen and Takahashi, has 
apparent advantages over the Terzaghi-Coulomb- 
viscous model, the assumption that the matrix 
behaves as an ideal fluid, with negligible viscosity, 
is a significant shortcoming.

The combined macro-viscous and inertial 
model that was initiated with Rodine's (1974) 
research and continued with McTigue's (1979) and 
Martosudarmo's (1994) research, culminating in the 
viscous-inertial model presented here, seems to 
provide the new direction required to develop viable 
models of debris flow, grain flow and debris 
avalanche. On the basis of this model, we can 
understand how the concept of debris flow can 
include a wide range of natural phenomena.

Pierson and Costa (1987) and Fleming and 
Varnes (1991) have recognized that the different 
mechanisms reflected in the Terzaghi-Coulomb- 
viscous model, on one hand, and the Bagnold 
model, on the other, are reflected in different natural 
phenomena that are lumped under the general 
designation of debris flow. In a debris avalanche, 
which initiate on high, steep slopes, the debris is 
shearing at such a high rate that the resistance due to 
impact of clasts dominates over resistance due to 
strength and viscosity of the interstitial fluid of the 
debris. In this view, the inertial viscosity would 
much larger than the macro viscosity in debris

avalanches. I believe that the phenomena 
investigated by Takahashi and his associates in 
Japan are grain flows and debris avalanches, not 
muddy debris flows.

Muddy debris flows are much less violent, and 
they typically initiate from landslide masses 
(Johnson, 1984; Fleming and others, 1989). In 
muddy debris flows the macro viscosity is larger 
than the inertial viscosity.

Muddy debris can remain mobile even if the 
debris is flowing slowly. This is a result of the 
astonishingly low conductivity of the granular phase 
of a debris flow with respect to the mixture of clay 
and water in the interstices of the granular phase and 
the low conductivity of water with respect to the 
solids.

The distinction between highly-energized 
debris flows, in the form of debris avalanches, and 
docile debris flows, in the form of muddy debris 
flows, is quite significant, because an avalanche 
tends to be catastrophic, whereas a flow tends to be 
relatively deliberate. The difference in dynamics 
between these two kinds of flow was recognized by 
Plafker and Ericksen (1978), who described a 
spectacular debris avalanche in Peru that reached 
extremely high speeds as it, essentially, fell down a 
steep mountain front, then transformed into a much- 
milder debris flow on lower slopes.

The concept of debris flow, though, spans the 
range of these phenomena according to Pierson, 
Costa, Fleming and Varnes.
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